TECHNICAL REPORT:

MARTISON PHOSPHATE PROJECT

"SOUTH OF RIDGE LAKE" AREA NORTH OF HEARST ONTARIO

FOR:

MARTISON PHOSPHATE PROJECT JOINT VENTURE

MANAGED BY: PHOSCAN CHEMICAL CORPORATION 360 Bay Street Suite 500 Toronto, Ontario Canada, M5H 2V6

BY:

JAMES S. SPALDING REGISTERED PROFESSIONAL GEOLOGIST IDAHO # 59 Report Date: May 30, 2007 Effective Data Date: April 1, 2007

Table of Contents

		PAGE
1.0	Summary	3
2.0	Introduction and Term of Reference	4
3.0	Reliance on Other Experts	4
4.0	Property Description and Location	5
5.0	Accessibility, Climate, Local Resources, Infrastructure and Physiography	6 7
6.0	History	
	6.1 General History of Activities	7
	6.2 Historical Estimates of "Reserves" and "Resources"	11
7.0	Geological Setting	12
8.0	Deposit Type	15
9.0	Mineralization	16
10.0	Exploration	17
11.0	Drilling	18
12.0 13.0	Sampling Method and Approach	22 23
14.0	Sample Preparation, Analyses and Security Data Verification	25
14.0	Adjacent Properties	25
16.0	Mineral Processing and Metallurgical Testing	20
17.0	In-situ Phosphate Resource Estimate	28
17.0	17.1 2007 Resource Estimate Background	29
	17.1.a Preliminary Geology Background	29
	17.1.b Resource Classifications Background	30
	17.1.c Bulk Density Background	31
	17.1.d Grade Cut-off Applications	32
	17.2 3-D Block Model	32
	17.3 2-D Model	34
	17.4 Polygons & Database Method	34
	17.5 2007 Resource Estimate	34
18.0	Other Relevant Data and Information	36
19.0	Interpretation and Conclusions	36
20.0	Recommendations	37
21.0	References	40 44
22.0	Date and Signature Page	
23.0	Additional Requirements For Technical Reports on Development Properties and	
	ProductionProperties	45
OFDT		40
	IFICATE	46
CONS		47
	NDIX – Tables and Illustrations	48
AFFE	Table 4.1. Martison Claim Data	40
	Table 19.1. Measured and Indicated Phosphate Resource Comparison	49 50
	Table 19.2. Inferred Phosphate Resource Comparison	51
		01
	Figure 1. Martison Carbonatite Complex – Site Location	52
	Figure 2. Martison Carbonatite Complex – Claim Locations	53
	Figure 3. Martison Carbonatite Complex – Anomaly Locations	54
	Figure 4. Martison – Anomaly A Area – Drill-Hole Locations	55
	Figure 5. Thickness of the Glacial Till (Litho Unit 4)	56
	Figure 6. Thickness of the Cretaceous Sediments (Litho Unit 3)	57
	Figure 7. Depth to Residuum	58

	ickness of Unconsolidated Residuum (Litho Unit 2A)	59
•	ickness of Re-cemented Residuum (Litho Unit 2B)	60
•	ickness of Combined Units 2A and 2B	61
•	aste to Residuum Ratio	62
v –	O₅ Variogram – Litho Unit 2A	63
•	O₅ Variogram – Litho Unit 2B	64
•	stration of Classification of Resources at the Martison Deposit	65
•	ock Model Cross Section – E. 327,790	66
•	ock Model Cross Section – N. 5,576,895	67
Figure 17. Blo	ock Model Cross Section – N. 5,576,495	68
	TEVT	
OF TABLES IN		4.4
Table 7.1	General Description of Lithology	14
Table 7.2	Chemical Characterization of Lithology	14
Table 11.1	Summary of Past Drilling Programs	20
Table 11.2	Summary of Historical Sampling Methods	20
Table 11.3	Summary of Core Recoveries for the Martison Carbonatite Complex	21
Table 11.4	Core versus Cuttings Analysis – 1984 Drilling Program	22
Table 16.1	Brief Summary of 1982 Beneficiation Testing Program	26
Table 16.2	Brief Summary of 1983 Beneficiation Testing Program	27
Table 16.2	Brief Summary of 1984 Beneficiation Testing Program	27
Table 17.1	Summary of Bulk Densities Used in 2007 Resource Estimate	31
Table 17.2	Comparative Modeling Methods	32
Table 17.3	Comparative Grade Interpolation Methods	33
Table 17.4	Measured and Indicated Mineral Resources	35
Table 17.5	Inferred Mineral Resources	35
Table 20.1	Estimated Costs for 2008 Drilling Program	38

LIST

1.0 SUMMARY

The Martison Phosphate Project area ("Martison") is located atop a carbonatite plug known as the Martison Carbonatite Complex. The project area is about 70 kilometres northeast of the town of Hearst, Ontario, and 15 kilometres southwest of Martison Lake in the James Bay Lowlands. The project area is located in the "South of Ridge Lake" area and centered about 50° 18' 52" N, 83° 24' 52" E. The Martison Phosphate Project is a joint venture between PhosCan Chemical Corporation ("PhosCan") and Baltic Resources Inc. ("Baltic"). Each of PhosCan and Baltic own 50% of the project assets. PhosCan is currently managing a series of studies of the project.

The Martison Carbonatite Complex is of apparent Proterozoic age and is capped by a residuum, the economic target of this project, formed through weathering processes thought to have occurred during the Cretaceous Period. The deposit is further overlain, in part, by other Cretaceous sediments and covered by a ubiquitous glacial till. There are no outcrops on the property.

The Martison area is characterized by of three aeromagnetic anomalies identified as A, B, and C. Most exploration has centered on the definition of Anomaly A. Anomaly A is the subject of this Technical Report which estimates the *in-situ* phosphate resources with minor comments on the niobium values contained in the residuum.

Exploration of the property began in 1981 and the last drilling program occurred in 2002. PhosCan is currently conducting a Preliminary Feasibility Study ("PFS") focusing on the production of phosphate concentrate from proposed mining on Anomaly A and beneficiation operations nearby with the subsequent manufacture of phosphoric acid and fertilizer products. This PFS will meet the requirements of N.I. 43-101 guidelines and a report, including a reserves study, will be issued in late 2007 at the conclusion of the PFS.

Based on recently completed studies, the Anomaly A area of the Martison Carbonatite Complex contains an estimated measured and indicated resource of at least 62.3 million *in-situ* tonnes of phosphatic material in Litho Units 2A and 2B averaging 23.55 % P_2O_5 and 0.34 % Nb_2O_5 . Inferred resources of phosphatic material are estimated to total 55.7 million *in-situ* tonnes in Litho Units 2A and 2B averaging 21.87 % P_2O_5 and 0.34 % Nb_2O_5 . These areas of inferred resources will require further drilling to elevate the resource classification. The estimates relied heavily on geostatistical studies of the drilling and analytical data as well as the construction of a computer-generated 3-D block model. Of vital importance to the interpretation of these data is the fact that significant areas of the residuum in the central portion of Anomaly A remain open at depth and planned future drilling will thoroughly test these areas.

The results of these recently concluded tasks are judged to be a successfully completed milestone in the development of the Martison project with the 3-D block model currently being used in mine planning activities associated with the PFS. Upon the favorable review of the completed PFS, a major field program will be initiated, likely in the winter of 2008, to further define Anomaly A, at depth and aerially, as well as collect the geotechnical and geochemical data necessary for the completion of the planned Feasibility Study. The Feasibility Study is currently scheduled to immediately follow the field campaign.

This Technical Report incorporates all applicable data, interpretations and conclusions which were in hand as of April 1, 2007.

2.0 INTRODUCTION

This N.I. 43-101 compliant report was prepared for PhosCan Chemical Corporation ("PhosCan") located in Toronto, Ontario, Canada, and presents the estimated *in-situ* phosphate resources for the Martison Phosphate Project ("Martison") which is focused on Anomaly A of the Martison Carbonatite Complex. The report encompasses information and studies generated over a period of 25 years. These data are the culmination of six (6) drilling programs and numerous metallurgical testing projects, environmental and geotechnical studies as well as economic/financial investigations. The writer, James S. Spalding, the Qualified Person for this report, was commissioned by PhosCan in July 2006 to review and update the geological and resource base for Martison. He completed due diligence visits to the project site, to the project core library and to the project-file archives in November 2006.

PhosCan is a TSX Venture Exchange listed company engaged in the development of the Martison Phosphate Project. PhosCan owns a 50% interest, in the Martison phosphate deposit which is located near Hearst in North-Central Ontario, close to rail, power, highway, and other infrastructure. The remaining 50% interest in Martison is owned by Baltic Resources ("Baltic") of Timmins Ontario. The interests of PhosCan and Baltic are subject to the Martison Joint Venture ("Joint Venture"). PhosCan is managing the current work being done on Martison on behalf of, and financed pro-rata, by, itself and Baltic. The Martison property contains a major carbonatite (igneous carbonate-rich) pipe capped by a residual deposit (residuum) enriched in phosphate and niobium minerals.

Phosphate fertilizers are used worldwide to sustain and improve crop yields, which are required to meet the needs of both a growing world population and annual depletion of soil nutrients. There is growing demand by chemical plants for phosphate from igneous sources, because of its low cadmium content. Cadmium is a toxic element. Restrictions on the cadmium content in both phosphate fertilizers and animal feed phosphates are a growing major concern. Most of the phosphate production is processed to fertilizer and shipped directly to consumer markets. The starting point for the manufacture of most phosphate products is phosphoric acid. It is made by the acidulation of phosphate concentrate (phos rock) using sulfuric acid and filtering out the resulting calcium sulfate (gypsum), leaving phosphoric acid containing 25% to 40% P_2O_5 , depending on the process being employed. Of particular benefit to the project is the availability of cheap sulfuric acid from nearby Ontario base-metal smelters, which produce acid as a byproduct during the capture of sulfur emissions – as, prescribed by clean air regulations.

On behalf of the Joint Venture, PhosCan is currently conducting a Preliminary Feasibility Study consisting of two phases. Phase One consists of mineral resource estimates and open-pit mine planning, the preparation of a phosphate concentrate, phosphoric acid tests of the concentrate utilizing the hemi-hydrate process, and tests producing the two fertilizer products contemplated for the market place. In conjunction, preliminary testing will take place on the quality of the gypsum produced from the phosphoric acid tests evaluating its possible use as a byproduct.

Phase Two is comprised of engineering studies, including the updating of all capital and operating costs, infrastructure costs, product mix, logistics and desired markets associated with the designing of a vertically integrated phosphoric acid facility.

3.0 RELIANCE ON OTHER EXPERTS AND DISCLAIMER

This technical report (NI 43-101 compliant) on the Martison Phosphate Project has been completed with reliance on numerous geological and technical study reports prepared by various companies, individuals, and government organizations in Canada. These references are listed in Section 21.0